Homoclinic orbits for a class of discrete periodic Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
Homoclinic orbits for discrete Hamiltonian systems with subquadratic potential
where n ∈ Z, u ∈ RN , u(n) = u(n + ) – u(n) is the forward difference operator, p,L : Z→ RN×N and W : Z× RN → R. As usual, we say that a solution u(n) of system (.) is homoclinic (to ) if u(n)→ as n→±∞. In addition, if u(n) ≡ , then u(n) is called a nontrivial homoclinic solution. In general, system (.) may be regarded as a discrete analogue of the following second order Hamiltonian sy...
متن کاملMULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS
In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.
متن کاملPeriodic Orbits of Hamiltonian Systems
5 The Variational principles and periodic orbits 21 5.1 Lagrangian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Hamiltonian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 Fixed energy problem, the Hill’s region . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Continuation of periodic orbits as critical p...
متن کاملSingular Perturbation Theory for Homoclinic Orbits in a Class of Near-Integrable Hamiltonian Systems∗
This paper describes a new type of orbits homoclinic to resonance bands in a class of near-integrable Hamiltonian systems. It presents a constructive method for establishing whether small conservative perturbations of a family of heteroclinic orbits that connect pairs of points on a circle of equilibria will yield transverse homoclinic connections between periodic orbits in the resonance band r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2015
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2015-12107-7